
Proximity Mining: Finding Proximity using Sensor Data History

Toshihiro Takada Satoshi Kurihara Toshio Hirotsu Toshiharu Sugawara
NTT Network Innovation Laboratories

NTT Corporation
{takada,kurihara,hirotsu,sugawara}@t.onlab.ntt.co.jp

Abstract

Emerging ubiquitous and pervasive computing
applications often need to know where things are
physically located. To meet this need, many location-
sensing systems have been developed, but none of the
systems for the indoor environment have been widely
adopted. In this paper we propose Proximity Mining, a
new approach to build location information by mining
sensor data. The Proximity Mining does not use geometric
views for location modeling, but automatically discovers
symbolic views by mining time series data from sensors
which are placed in surroundings. We deal with trend
curves representing time series sensor data, and use their
topological characteristics to classify locations where the
sensors are placed.

Keywords — Proxymity Mining; Location modeling; Zero
configuration; Location-aware computing; Context-aware
computing; Pervasive computing; Ubiquitous computing;
Spatial Data Mining; Real-space computing

1. Introduction

As the recent interest in ubiquitous computing [20]
shows, in the future we will find more and more
computational devices surrounding us in our daily lives.
This is made possible not only by improvements in power
usage and hardware miniaturization, but also by the large
address space of IPv6, local communication protocols
such as IEEE 802.11 and Bluetooth, and by technologies
such as RFID that allow wireless identification of objects
and people. We have chosen an auto-configuration feature
and human-environment interface as being two important
technologies in this situation.

A method for address auto-configuration is defined in
IPv6 [18], and this makes it possible for a huge number of
devices to be IP-reachable. However, this auto-
configuration only assigns IP addresses to these devices,
and is of no use in finding the processor’s physical
location or the presence of other devices in the area. IETF

zeroconf [6], a protocol set for configuration-free
networking, merely makes name resolution and the
discovery of services such as printers possible.

If all of the input devices (sensors and controllers,
etc) and output devices (lighting and sound sources,
actuators, etc) in the home or office were to be connected
to a network, the number of devices involved would easily
be on the order of 102 for a household and 103 for an
office floor. Setting up this many devices manually is not
realistic, and in addition, the use of wireless technology
means that some of the devices will be moveable and
must thus be dynamically added to and deleted from the
network. It is necessary to create a system platform that
allows for the auto-configuration of physical devices in a
real-space environment, based on their location and
input/output abilities.

But why is it necessary to have so many processors
with their sensors and actuators around us? One reason is
that the objects to be controlled and the data to be
measured exist all throughout the real-space environment.
For example, in a house there are many electronic devices
and lighting, heating and water appliances to be controlled.
In order to control these devices and appliances, it is
necessary to collect data from the environment (data such
as temperature, humidity, noise, and scents, etc). The
same is true in an office or factory setting. For example, a
rack of computers and networking devices would include
data in the traditional sense (the contents of files and
packets, etc) as well as data about the state of the devices
themselves (CPU and disk usage data, network interface
error rates, etc). In addition, other data would also exist
such as the manufacturer’s serial number, owner
information, fan and disk noise, temperature, and smell
(does it smell burnt?).

Indeed, in the real-world environment, various kinds
of data and properties surround us. However, merely
displaying all of them to a user is a recipe for failure. In
order to make an environment of ubiquitous sensors,
processors, and actuators a reality, it is necessary to have
an interface that retrieves only the environmental data and
properties needed at a particular time. We see this as an

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

interface between users and environmental properties, and
believe that it is necessary to construct a system platform
that would make this possible. For the above reasons, we
believe that the auto-configuration feature and the human-
environment interface are two important technological
factors in the creation of an environment filled with a
large number of sensors, processors and actuators.

Ubiquitous and pervasive computing applications
often need to know where people and things are
physically located. However, most location systems
require painstaking pre-configuration in order to obtain
accurate location data [4]. For example, the location of
beacons must be accurately determined beforehand. This
kind of pre-configuration not only goes against the kind of
system deployment, it also affects the dynamic
adaptability of the system to the environment. Thus, our
goal is to avoid pre-configuration for location systems
wherever possible.

In this paper we focus on a technique to automatically
build location information. The core of our contribution is
Proximity Mining, a new approach to build location
information by mining sensor data. The Proximity Mining
does not use geometric views for location modeling, but
automatically discovers symbolic views by mining time
series data from sensors which are placed in surroundings.
We deal with trend curves representing time series sensor
data, and use their topological characteristics to classify
locations where the sensors are placed.

The rest of this paper is organized as follows. In
Section 2, we outline the general concept of location
modeling and semantic proximity. In Section 3, we
explain the relation between semantic proximity and
sensor data. We then introduce the method, Proximity
Mining in Section 4, and describe the result of initial
experiments in Section 5. In Section 6, we discuss our
initial experience regarding the prospects of our method,
and conclude the paper in Section 7.

2. Location systems and proximity

2.1. Location modeling

When creating location-aware applications, how to
model and express physical space is a major problem.
There are many location models in the field of ubiquitous
computing research [2]. These location models can be
divided into two groups — “geometric model” and
“symbolic model”. [12] Geometric model is based on a
system of coordinates (e.g. based on GPS). Symbolic
model essentially involves labeling each location (and
then describe the relation between labels with a tree or a
graph of some kind) [3][14]. Each model has pros and
cons, and several hybrid models have also been proposed
that combine both kinds of model [9][10][12]. Research in

autonomous robots [19] and MANET (Mobile Ad-hoc
Networks) [1] has also involved similar work into location
and map models.

Most outdoor location-aware systems make use of
GPS — a geometric location model. On the other hand,
while there are many proposals for indoor locations
sensing schemes [7], because of problems with accuracy,
scalability, cost, and the complex setup required, none of
them have been widely adopted. Moreover, a simple
geometric location modeling is not enough to create a
location-aware system, as we will explain in the following
section.

2.2. Semantic proximity

For building location-aware applications, it is
necessary to use a more advanced definition of distance
— one that is not strictly geometric. An example is the
following:

The other side of a wall or partition may be
close in terms of absolute distance, but
because a person must take the long way
around to reach that point, it can be
considered “far”.

Here is another example, that is the real case at the
authors’ own office:

There is a workspace separated by high
partitions. It is possible to talk over the
partitions, or to hand something to someone on
the other side. However, since it isn’t possible
to see the computer display situated above a
coworker’s desk, it is necessary to go to the
coworker’s cubicle to have a discussion about
something on the screen.

We refer to this advanced concept of distance, which
changes depending on locale and context, as “proximity”.
[5][16] One of the goals of our research is to discover to
what extent context-aware applications can be created
using only symbolic location models based on this
concept of proximity.

3. Finding proximity using sensor data
history

3.1. Problem definition

In this section we will show an example of a problem
that needs to be solved. Imagine an office with 19 sensor
points (points A through S, See Figure 1) and 8 doors
(door 1 through 8). Each sensor point is equipped with the
following kinds of sensors:

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

• Light level sensor
• Temperature sensor
• Humidity sensor
• Human detecting sensor (a pyroelectric motion

sensor or an optical Position Sensitive Detector
to detect a human body)

Moreover, each door is equipped with a reed switch. This
switch acts as sensor to detect opening and closing the
door. (Hereinafter sensors and reed switches are
collectively called sensors.) We can collect sensed data
from these sensors, but we cannot know the accurate
physical locations of the sensors.

The problem we must solve here is how to find things
like “rooms” “corridors”, and “traffic paths” by using the
data history from these sensors. For example, if the light
level sensors for points A, B, C, and D always change at
the same time, it can be surmised that these points are all
in one room with a single light switch. If the temperature
and humidity sensors for points E through H always
change together (separately from the other points) it can
be surmised that they exist in a room with independent air
conditioning controls (a machine room, for example).

Further, if by examining the data history from the
human sensors it is determined that there are large
numbers of people traveling from point M to point N, and
from point N to point O, it would be possible to conclude
that points M, N, and O form a single “corridor” of some
kind. The same thing might be said of points S and R, and
R and Q. Moreover, if by combining the data history from
human sensors and door sensors we often observe the
sequence of events that point O detects a person, door 3
opens, point D detects a person, door 4 opens, and then
point G detects a person successively, it can be surmised
that points O, 3, D, 4, and G form a “traffic path”.

Thus, in general, discovering proximity involves
determining the relationships between sensors by
examining dynamic and static sensor data correlations.
The consequent proximity is used to cluster sensors. The
result of clustering will be then used for forming a
location model (See Figure 2).

3.2. Characteristics of the problem

The process for finding proximity of sensors can be
seen as a kind of data mining. Thus, some compensation
techniques for error data used in normal data mining can
be applicable. We should also note that the goal of the

NN

AA BB EE FF II JJ

PP QQ RROO

CC LLDD KKGG HH

MM SS

Figure 1. Sensor points and doors at an office

floor

 clustering sensor points

using the correlations of
sensor data history

human sensors

light level sensors
door sensor

build symbolic
location model from
the clustering result

a room?
a corridor?

 a traffic path?

room 1
traffic path 1 corridor 1

Figure 2. From sensor data to proximity clusters,

from clusters to location model

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

mining is to cluster not the data values but rather the
aspects of how data changes. For example, imagine the
following kind of situation:

• The illumination in a room with a single light
switch always changes in the same manner, but
the absolute intensity of illumination (light level)
differs from location to location in the room

We have to therefore calculate the correlation between
data by not the value of sensed data, but rather the time
when the value of sensed data distinguishably change.

In addition, there are two types of the changes.
Namely,

• Changes of sensor data values that happen almost
synchronously (Figure 3), applicable to the case
of detecting a “room” using the data history from
light, temperature and humidity sensors

• Changes of sensor data values that happen
successively (Figure 4), applicable to the case of
detecting a “traffic path” using the data history
from human and door sensors

Thus, the problem we have to solve can be regarded as a
sort of qualitative similarity detection on a time series
curve.

4. Proximity Mining

4.1. Outline of the method

In this section we outline the Proximity Mining being
proposed in this paper. It makes use of an analysis of the
topological characteristics of time series curves [15]. We
first extract outstanding peaks and bottoms (described in
Section 4.2) from the time series of sensed data values,
and calculate degrees of correlation for their order of
appearance in the time series as degrees of correlation for
the curve. The clustering of time series curves are then
performed using the degrees of correlation. This method is
based on a characteristic that the locations of the peaks
and bottoms on the time series curve are firm properties in
relation to the continual change of the time axes and
observed data values.

The outline of the whole method is as follows:
Phase 1. Preprocess data

• Discard obvious error data (e.g. outside
of sensor range)

Phase 2. Calculate the sequences of outstanding
peaks and bottoms for each sensor data
history

Phase 3. Cluster sensors
• Do simple clustering. The edit-distance

between the sequences is used as a
distance measure of the similarity
between objects which to be clustered
(sensors, in this case)

In the next section, we will elaborate on an algorithm
used in Phase 2. Then, we will show a brief explanation of
Phase 3 in Section 4.3.

4.2. Algorithm for calculating the peak/bottom
sequences

At the core of our method is an algorithm for
calculating outstanding peak/bottom sequences for each
sensor data history. The data history of each sensor is
represented by a measured value on the time series. A
summary of the algorithm is as follows (also see Figure 5).

Step 0. Define threshold h*
Step 1. Extract only data that represent the peaks

and bottoms of the time series
Step 2. Remove any peak and bottom data whose

relative height is less than threshold h*
Step 3. Extract only peaks and bottoms from the

data remaining after Step 2
Step 4. Repeat Step 2 if any peaks or bottoms

whose relative height is less than h* exist.
If not, processing finishes

We define that any data remaining after this processing
has finished are the outstanding peaks and bottoms of that
data set. The sequence of outstanding peaks and bottoms,
C(f)[t,t+Tk], is defined by the order of appearances of peak
P and bottom B for a particular time period [t,t+Tk] of

time

se
ns

or
 v

al
ue

s
[e

.g
. '

m
V'

 fo
r

 a
na

lo
g

se
ns

or
s]

Figure 3. Values change synchronously

time

se
ns

or
 v

al
ue

s
[e

.g
. '

m
V'

 fo
r

 a
na

lo
g

se
ns

or
s]

same delay observed

Figure 4. Values change successively

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

time series data f , which are arrived at through the
algorithm.

For example, in Figure 5, there are four pieces of
sensor data history, f1, f2, f3, and f4. Please note that, in
the case of this example, we assume that f3 and f4 change
synchronously, f3 and f1 change successively (of course
f4 and f1 change successively too), and f2 changes
independently. As shown in the Figure 5, the resulting
peak/bottom sequences become:

C(f1)[t,t+Tk] = (B,P,B,P)
C(f2)[t,t+Tk] = (B,P)
C(f3)[t,t+Tk] = (B,P,B,P,B)
C(f4)[t,t+Tk] = (B,P,B,P,B)

4.3. Clustering sensors

In this section, we will describe briefly how sensors are
clustered. The general idea of clustering is to group
similar objects together. In this paper, an object to be
clustered is a sensor (not a sensor point). This means that
we can find even the correlation between sensors at the
same sensor point.

A distance measure of the similarity between two
objects is essential to most clustering procedures. In our
method, the edit-distance between the sequences is used
as the distance measure. For instance, illustrating with
examples in Section 4.2 (and Figure 5), the distances
between f1, f2, f3 and f4 are:

Step 2.
Remove any peaks and
bottoms whose relative
height is less than
threshold h*

f1
f2

f4

time

se
ns

or
 v

al
ue

s

time

time

time

Step 1.
Extract only peaks
and bottoms

Step 3.
Extract only peaks
and bottoms
remaining from Step 2

Step 4.
Repeat Step 2 if any
peaks or bottoms whose
relative height is less
than h* exist.
If not, finish this process

f1
f2

f1
f2

f1
f2

CC((f1))[[t,t+Tk]] = (B, P, B, P))
CC((f2))[[t,t+Tk]] = (B, P))
CC((f3))[[t,t+Tk]] = (B, P, B, P, B))
CC((f4))[[t,t+Tk]] = (B, P, B, P, B))

t t+Tk

t t+Tk

t t+Tk

t t+Tk

f3

f4
f3

f4
f3

f4
f3

(a)

(b) (d)

(c)

the sequence of "outstanding"
peaks and bottoms, as the
reslut of this process

se
ns

or
 v

al
ue

s

se
ns

or
 v

al
ue

s

se
ns

or
 v

al
ue

s

h*

Figure 5. Proximity Mining: the overview of the algorithm for calculating the peak/bottom sequences

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

D(f3,f4)[t,t+Tk] = 0
D(f1,f3)[t,t+Tk] = D(f1,f4)[t,t+Tk] = 1
D(f1,f2)[t,t+Tk] = 2
D(f2,f3)[t,t+Tk] = D(f2,f4)[t,t+Tk] = 3

In the context of this paper, the shape, size, and
number of the cluster is generally unknown. So, we solely
use the simple clustering algorithm [10] at this time. The
sensor clustering is actually done while altering the time
period [t,t+Tk]. At the present time, we use five patterns
for the length of the time period (Tk), 1-hour, 6-hours, 1-
day, 4-days, and 1-week. Since the sensor data values are
profoundly affected by the activities of the people using
the environment, it was thought best to choose lengths of
time that might correspond to the lengths of normal
human activities.

5. Initial experiments of Proximity Mining

5.1. Sensor hardware and setting

We have implemented an initial experimental setup
for the Proximity Mining. This section explains sensor
hardware and setting used in this experimentation.

At the time of this writing, we are collecting data
from a total of 52 sensors in 12 points on a single office
floor. We place sensors in three rooms, three doorways,
and one corridor. There are 9 kinds of sensors used:

1) Light level sensors — Using CdS or photodiode.
Yield a nominal light level (the intensity of
illumination). Original sensor circuit is designed
to provide a signal between 0 and +12 volts DC.

2) Temperature sensors — Using LM35DZ by
National Semiconductor Corp. Provide a signal
between 0 and +5 volts DC, linear +10.0 mV/°C
scale factor, and ±0.5 °C accuracy.

3) Humidity sensors — Using CHS-GSS by TDK.
Original sensor circuit is designed to provide a
signal between 0 and +12 volts DC, linear +10.0
mV/% scale factor, and ±5 % accuracy.

4) Odor sensors — Using NAP-11AS, In2O3
semiconductor type gas sensor, by Nemoto & Co.,
Ltd. Yield a nominal odor level of various smells
generated in a normal living environment, such
as cooking odors, putrid smells, organic solvent
smells, cigarette smoke, cosmetics, coffee, etc.
Original sensor circuit is designed to provide a
signal between 0 and +12 volts DC.

5) Voltage sensors — Voltmeter for some electric
devices in the office. Original sensor circuit is
designed to provide a signal between 0 and +12
volts DC.

6) Current sensors — Ammeter for some electric
devices in the office. Original sensor circuit is
designed to provide a signal between 0 and + 12
volts DC.

7) Pyroelectric motion sensors for human detecting
— Using NaPiOn by Matsushita Electric Works,
Ltd. Detect human bodies (detect changes in
infrared light that occur due to the movement of a
living body). Provide a signal between 0 and +5
volts DC. Detecting distance is about from 0 to 5
meter.

8) Optical Position Sensitive Detectors for human
detecting — Using PSD by Sharp Corp. Measure
a distance to an object (suspecting the human
body). Original sensor circuit is designed to
provide a signal between 0 and +5 volts DC.
Detecting distance is about from 0.2 to 1.5 meter.

9) Reed switches — Detect open and close the door.
Original sensor circuit is designed to provide a
signal 0 volts DC when the door closes and +5
volts DC when open.

Analog signals from sensors are passed to micro-
controller (PIC) boxes. These boxes do analog-to-digital
conversion, encapsulate them into UDP packets, and then
send the packets to a data-gathering host via Ethernet. To
send data, either wired (10/100BASE-T) or wireless
(IEEE 802.11a/b) network connection is used, according
to where sensors are located. The analog-to-digital
conversions have 10 to 16 bits accuracy (depend on which
micro-controller chip is used). In the most cases, a single
micro-controller box serves 4 to 8 sensors.

For the sensors 1) to 6), they are sampled and data-
sent at a rate of once per minute. On the other hand, for
the sensors 7) to 9), sensors are sampled at a rate of once

Figure 6. Sensors in our office

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

per 10 to 100 milliseconds, but the micro-controllers just
keep watching over whether the human body is detected
(the door opens). And only once in a minute, the results of
the occurrence of the human detection (door opening)
during the minute are sent to the host. Figure 6 shows
pictures of sensors placed in our office.

5.2. Experimental results

First of all, we will show examples of time series data
from sensors. One of easiest and fastest way to grasp
general characteristics of these data and also to predict
how a system could group the raw data into clusters, is by
plotting the output of all sensors directly on a time scale in
parallel. Figure 7(a) shows time series of all sensor data
during six hours, and Figure 7(b) shows ones for a week.
Since there are too many data to plot, we cannot show the
functions of each time series in these figures.

However, some periodic changes can be found in
these plots, and it could be imagined that those changes
are affected by the activities of the people in our office.
For example, Figure 7(a) shows that, one day, in the
morning, a person came to the office and turned the light
of a room on at just after 7:00 am. He or she switched
some office equipment on at about 7:10 am. At around
9:45 am, the light of another room was switched on. In
addition, Figure 7(b) shows that we did not work at
midnight, as well as on the weekend.

To pay attention to some time series data, Figure 8
shows that time series of six sensors values indicating the
light level in three different rooms during four days.
Actually, light1 and light2 are in the room-1, light3 and
light4 are in the room-2, and light5 and light6 are in the
room-3. Similarly, Figure 9 shows that time series of three
sensors values during six hours. They are one odor sensor,
one humidity sensor, and one human detecting sensor.

Figure. 8 Time series of the light sensors

Figure. 9 Time series of the odor, humidity, and
human sensor

(a) 6 hours

(b) 1 week

Figure 7. Time series of all sensor data

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

With this experimental environment and the sensor
setup, our algorithm typically results in generating the
following eight clusters:

1) Cluster-A
• Contains five light level sensors

2) Cluster-B
• Contains three light level sensors

3) Cluster-C
• Contains three light level sensors

4) Cluster-D
• Contains one current sensor and two human

sensors
5) Cluster-E

• Contains one odor sensor, one humidity
sensor, and one human sensor

6) Cluster-F
• Contains one door sensor and one human

sensor
7) Cluster-G

• Contains one door sensor and one human
sensor

8) Cluster-H
• Contains one door sensor and one human

sensor

Based on the above clustering result and a knowledge that
some light sensors and human sensors are placed at the
same sensor point, we can now assume that Cluster-A
includes Cluster-D, Cluster-E, and Cluster-F, Cluster-B is
includes Cluster-G, and Cluster-C includes Cluster-H,
respectively. Figure 10(a) illustrates the final result of the
clustering.

Now it is time to examine the result. For Cluster-A,
Cluster-B, and Cluster-C, these clusters clearly represent
the discovery of three rooms. Cluster-D represents the
existence of a certain device in our office and the people
using it. Cluster-E shows the area where people appear,
and an odor and moisture breaks out sometimes. Actually,
Cluster-E reflects a coffee maker table in the room.
Cluster-F, Cluster-G, and Cluster-H represent doorways.
We illustrate this interpretation of the clustering result in
Figure 10(b).

6. Discussion

6.1. Experience with sensor data mining

Current Proximity Mining algorithm only generates
subsymbolic information of locations. This is principally
because, at the moment, we do not use any ID-based
information on things and persons (like using RFID).
Thus, as shown in the previous section, it is difficult to
determine things like which cluster corresponds to which
room, or how the doorways are connected to those rooms.

This makes it hard to be grounded [7] clusters in actual
properties. However, we think such subsymbolic
information is a clue to elucidate the logical structure of
surroundings with less administrative effort.

Another possible problem with our method is that it
takes a certain amount of time to build up the data history
needed to create the location information. However, we
think that this boot-up procedure could be shortened by
users’ assistance. For example, at the initial time, a user
can turn the light a room on and off, quickly over again
intentionally, to make the system recognize this room. A
user also can touch human sensors one by one along the
hallway, to show the “traffic path”.

AA

DD

BB

CC

current sensor

door sensors

human sensors

HH

FF

GG

EE

odor sensor

 collocation
 light sensors

humidity sensor

(a) Resulting clusters and sensors

Room 1

Room 2

Room 3

Doorway 1

Doorway 3

Doorway 2

Device 1

Coffee maker 1

(b) Interpretation of the resulting clusters

Figure 10. The result of the sensor clustering

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

Now let us discuss the sensors separately. First of all,
the light level sensors are particularly informative. Almost
all rooms (with a single light switch) can be found by
mining only the light sensor data. On the other hand,
temperature and humidity sensors are not so usable. One
of the reasons for this incompetency is that the
experimentation is done in “well air-conditioned” office.
At this moment, we could not estimate if these sensors are
usable in less air-conditioned environments or not.
However, as shown in the result, the humidity sensor
played an unforeseen role, finding steam. It is easy to
imagine that humidity sensors (and odor sensors) will be
used for finding a kitchen in the home environments, and
furthermore, used for mining the context of the kitchen.
The human detectors (both pyroelectric motion sensors
and optical Position Sensitive Detectors) and door sensors
by reed switches work very well.

The experimental environment has been set at part of
our office. Eight persons usually work, five to ten
neighbor colleagues often drop in, and casual guests visit
sometimes at this area. It is not yet considered that the
effect of the number of people in the environment,
especially upon finding like corridors and traffic paths.

6.2. Related work

Some kinds of data mining make use of data from
spatial phenomena, and there is research being done into
this “spatial data mining”. [13] Spatial data mining in
general is concerned with using the spatial characteristics
of data to extract patterns and clusters. We wish to point
out that in our own research we are concerned with
extracting spatial structure itself from time series data, and
in that respect it is different from the work being done by
others.

The most closely related to our work is that research
in sensor-based context-awareness. For example, in
[5][17], sensor data are mined to obtain the context of the
people (or things like mobile phone and coffee cup).
However, in contrast to their approach, we are now
focusing to obtain location information, in other words, to
reveal the semantic structure of the surroundings where
people are. We think these two approaches will
complement each other.

7. Conclusion and Future Work

In this paper we have introduced Proximity Mining,
the new approach to build location information by mining
sensor data. It analyzes sensor data history to examine the
dynamic and static sensor data correlations, and then
clusters sensors by using the correlations to find the
structure of surroundings. Also we have reported the
results of our initial experiments of this approach.

In a sensor-filled real-world ubiquitous computing
environment, it is very important to be able to determine
the placement of sensors with less administrative effort.
We plan to build an actual location system by solely using
the analysis of device proximity data, and implement
context-aware applications based on this location system.

Our main contention in this research is that location-
aware applications only actually need the answers to
queries about things like “distance” and “inclusion”, and
that geometric coordinates are merely ways of calculating
these values. Thus, if the answers to these queries can be
arrived at in some other way, there is no need to insist on
using a geometric location model. It remains to be seen
what kinds of applications can be created using the data
obtained through our method, and which kinds are
impossible.

We also started introducing ID-based sensor systems
(RFID) to our environment. We would like to stress here
that the purpose of introducing RFID is to be grounded
clusters in actual properties. Thus, we do not presuppose
the situation that every objects in the world will become
RFID-equipped. One of our aims is to achieve more
intelligent surroundings with less ID-equipped human and
artifacts.

Acknowledgements

The authors would like to thank many people at our
laboratory group for their generous help. This paper
would not have been possible without the valuable
discussions with Kensuke Fukuda, Susumu Shimizu,
Kenichi Kourai, and Shigemi Aoyagi. Keiji Hirata and
Yasunori Harada have made some excellent suggestions
regarding our project. Minoru Kubota has encouraged us
in our research. Suggestions of the reviewers helped
improve this paper, and we are particularly grateful to
them for their valuable comments.

References

[1] Bauer, M., Becker, C., and Rothermel, K., “Location
models from the perspective of context-aware applications
and mobile ad hoc networks”, In [2], pp. 35-40.

[2] Beigl, M., Gray, P., and Salber, D. (eds.), Location
Modeling for Ubiquitous Computing, Workshop
Proceedings, UbiComp 2001, 2001.

[3] Brumitt, B. and Shafer, S., “Topological world modeling
using semantic spaces”, In [2], pp. 55-62.

[4] Bulusu, N., Estrin, D., and Heidemann, J., “Tradeoffs in
location support systems: the case for quality-expressive
location models for applications”, In [2], pp. 7-12.

[5] Gellersen, H.-W., Schmidt, A., and Beigl, M., “Adding
some smartness to devices and everyday things”, In
Proceedings of the 3rd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA 2000),
pp. 3-10, 2000.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

[6] Guttman, E., “Autoconfiguration for IP networking:
enabling local communication”, IEEE Internet Computing,
Vol. 5, No. 3, 2001, pp. 81-86.

[7] Harnad, S., “The Symbol Grounding Problem”, Physica D,
Vol. 42, 1990, pp. 335-346.

[8] Hightower, J. and Borriello, G., A Survey and Taxonomy of
Location Systems for Ubiquitous Computing, Technical
Report UW-CSE 01-08-03, University of Washington,
2001.

[9] Hightower, J., Brumitt, B., and Borriello, G., “The location
stack: a layered model for location in ubiquitous
computing”, In Proceedings of the 4th IEEE Workshop on
Mobile Computing Systems and Applications
(WMCSA 2002), pp. 22-28, 2002.

[10] Jain, A. K., Murty, M. N., and Flynn, P. J., “Data
clustering: a review”, ACM Computing Surveys, Vol. 31,
No. 3, 1999, pp. 264-323.

[11] Jiang, C. and Steenkiste, P., “A hybrid location model with
a computable location identifier for ubiquitous computing”,
In UbiComp 2002 Proceedings, LNCS 2498, pp. 246-263,
2002.

[12] Leonhardt, U.: Supporting Location-Awareness in Open
Distributed Systems, PhD thesis, Imperial College,
University of London, 1998.

[13] Ng, R. T. and Han, J., “CLARANS: a method for clustering
objects for spatial data mining”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 14, No. 5, 2001,
pp. 1003-1016.

[14] O'Connell, T., Jensen, P., Dey, A., and Abowd, G.,
“Location in the aware home”, In [2], pp. 41-44.

[15] Okabe, A. and Masuyama, A., “An exploratory method for
qualitative trend curve analysis – a robust method against
low quality data”, International Journal of Geographical
Information Science, Vol. 15, No. 1, 2001, pp. 65-76.

[16] Schiele, B. and Antifakos, S., “Beyond position
awareness”, In [2], pp. 107-112.

[17] Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U.,
Van Laerhoven, K., and Van de Velde, W., “Advanced
Interaction in Context,” In Proceedings of the First
International Symposium on Handheld and Ubiquitous
Computing (HUC 99), LNCS 1707, pp. 89-101, 1999.

[18] Thomson, S. and Narten, T., IPv6 Stateless Address
Autoconfiguration, RFC 2462, 1998.

[19] Thrun, S., Robotic Mapping: A Survey, Technical Report
CMU-CS-02-111, Carnegie Mellon University, 2002.

[20] Weiser, M., “The computer for the 21st Century”, Scientific
American, Vol. 265, No. 3, 1991, pp. 94-104.

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)
0-7695-1995-4/03 $17.00 © 2003 IEEE

