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Abstract 

Emerging ubiquitous and pervasive computing 
applications often need to know where things are 
physically located. To meet this need, many location-
sensing systems have been developed, but none of the 
systems for the indoor environment have been widely 
adopted. In this paper we propose Proximity Mining, a 
new approach to build location information by mining 
sensor data. The Proximity Mining does not use geometric 
views for location modeling, but automatically discovers 
symbolic views by mining time series data from sensors 
which are placed in surroundings. We deal with trend 
curves representing time series sensor data, and use their 
topological characteristics to classify locations where the 
sensors are placed. 

Keywords — Proxymity Mining; Location modeling; Zero 
configuration; Location-aware computing; Context-aware 
computing; Pervasive computing; Ubiquitous computing; 
Spatial Data Mining; Real-space computing 

1.  Introduction 

As the recent interest in ubiquitous computing [20] 
shows, in the future we will find more and more 
computational devices surrounding us in our daily lives. 
This is made possible not only by improvements in power 
usage and hardware miniaturization, but also by the large 
address space of IPv6, local communication protocols 
such as IEEE 802.11 and Bluetooth, and by technologies 
such as RFID that allow wireless identification of objects 
and people. We have chosen an auto-configuration feature 
and human-environment interface as being two important 
technologies in this situation. 

A method for address auto-configuration is defined in 
IPv6 [18], and this makes it possible for a huge number of 
devices to be IP-reachable. However, this auto-
configuration only assigns IP addresses to these devices, 
and is of no use in finding the processor’s physical 
location or the presence of other devices in the area. IETF 

zeroconf [6], a protocol set for configuration-free 
networking, merely makes name resolution and the 
discovery of services such as printers possible. 

If all of the input devices (sensors and controllers, 
etc) and output devices (lighting and sound sources, 
actuators, etc) in the home or office were to be connected 
to a network, the number of devices involved would easily 
be on the order of 102 for a household and 103 for an 
office floor. Setting up this many devices manually is not 
realistic, and in addition, the use of wireless technology 
means that some of the devices will be moveable and 
must thus be dynamically added to and deleted from the 
network. It is necessary to create a system platform that 
allows for the auto-configuration of physical devices in a 
real-space environment, based on their location and 
input/output abilities. 

But why is it necessary to have so many processors 
with their sensors and actuators around us? One reason is 
that the objects to be controlled and the data to be 
measured exist all throughout the real-space environment. 
For example, in a house there are many electronic devices 
and lighting, heating and water appliances to be controlled. 
In order to control these devices and appliances, it is 
necessary to collect data from the environment (data such 
as temperature, humidity, noise, and scents, etc). The 
same is true in an office or factory setting. For example, a 
rack of computers and networking devices would include 
data in the traditional sense (the contents of files and 
packets, etc) as well as data about the state of the devices 
themselves (CPU and disk usage data, network interface 
error rates, etc). In addition, other data would also exist 
such as the manufacturer’s serial number, owner 
information, fan and disk noise, temperature, and smell 
(does it smell burnt?). 

Indeed, in the real-world environment, various kinds 
of data and properties surround us. However, merely 
displaying all of them to a user is a recipe for failure. In 
order to make an environment of ubiquitous sensors, 
processors, and actuators a reality, it is necessary to have 
an interface that retrieves only the environmental data and 
properties needed at a particular time. We see this as an 
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interface between users and environmental properties, and 
believe that it is necessary to construct a system platform 
that would make this possible. For the above reasons, we 
believe that the auto-configuration feature and the human-
environment interface are two important technological 
factors in the creation of an environment filled with a 
large number of sensors, processors and actuators. 

Ubiquitous and pervasive computing applications 
often need to know where people and things are 
physically located. However, most location systems 
require painstaking pre-configuration in order to obtain 
accurate location data [4]. For example, the location of 
beacons must be accurately determined beforehand. This 
kind of pre-configuration not only goes against the kind of 
system deployment, it also affects the dynamic 
adaptability of the system to the environment. Thus, our 
goal is to avoid pre-configuration for location systems 
wherever possible. 

In this paper we focus on a technique to automatically 
build location information. The core of our contribution is 
Proximity Mining, a new approach to build location 
information by mining sensor data. The Proximity Mining 
does not use geometric views for location modeling, but 
automatically discovers symbolic views by mining time 
series data from sensors which are placed in surroundings. 
We deal with trend curves representing time series sensor 
data, and use their topological characteristics to classify 
locations where the sensors are placed. 

The rest of this paper is organized as follows. In 
Section 2, we outline the general concept of location 
modeling and semantic proximity. In Section 3, we 
explain the relation between semantic proximity and 
sensor data. We then introduce the method, Proximity 
Mining in Section 4, and describe the result of initial 
experiments in Section 5. In Section 6, we discuss our 
initial experience regarding the prospects of our method, 
and conclude the paper in Section 7. 

2.  Location systems and proximity 

2.1.  Location modeling 

When creating location-aware applications, how to 
model and express physical space is a major problem. 
There are many location models in the field of ubiquitous 
computing research [2]. These location models can be 
divided into two groups — “geometric model” and 
“symbolic model”. [12] Geometric model is based on a 
system of coordinates (e.g. based on GPS). Symbolic 
model essentially involves labeling each location (and 
then describe the relation between labels with a tree or a 
graph of some kind) [3][14]. Each model has pros and 
cons, and several hybrid models have also been proposed 
that combine both kinds of model [9][10][12]. Research in 

autonomous robots [19] and MANET (Mobile Ad-hoc 
Networks) [1] has also involved similar work into location 
and map models. 

Most outdoor location-aware systems make use of 
GPS — a geometric location model. On the other hand, 
while there are many proposals for indoor locations 
sensing schemes [7], because of problems with accuracy, 
scalability, cost, and the complex setup required, none of 
them have been widely adopted. Moreover, a simple 
geometric location modeling is not enough to create a 
location-aware system, as we will explain in the following 
section. 

2.2.  Semantic proximity 

For building location-aware applications, it is 
necessary to use a more advanced definition of distance 
— one that is not strictly geometric. An example is the 
following: 

The other side of a wall or partition may be 
close in terms of absolute distance, but 
because a person must take the long way 
around to reach that point, it can be 
considered “far”. 

Here is another example, that is the real case at the 
authors’ own office: 

There is a workspace separated by high 
partitions. It is possible to talk over the 
partitions, or to hand something to someone on 
the other side. However, since it isn’t possible 
to see the computer display situated above a 
coworker’s desk, it is necessary to go to the 
coworker’s cubicle to have a discussion about 
something on the screen. 

We refer to this advanced concept of distance, which 
changes depending on locale and context, as “proximity”. 
[5][16] One of the goals of our research is to discover to 
what extent context-aware applications can be created 
using only symbolic location models based on this 
concept of proximity. 

3.  Finding proximity using sensor data 
history 

3.1.  Problem definition 

In this section we will show an example of a problem 
that needs to be solved. Imagine an office with 19 sensor 
points (points A through S, See Figure 1) and 8 doors 
(door 1 through 8). Each sensor point is equipped with the 
following kinds of sensors: 
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• Light level sensor 
• Temperature sensor 
• Humidity sensor 
• Human detecting sensor (a pyroelectric motion 

sensor or an optical Position Sensitive Detector 
to detect a human body) 

Moreover, each door is equipped with a reed switch. This 
switch acts as sensor to detect opening and closing the 
door. (Hereinafter sensors and reed switches are 
collectively called sensors.) We can collect sensed data 
from these sensors, but we cannot know the accurate 
physical locations of the sensors. 

The problem we must solve here is how to find things 
like “rooms” “corridors”, and “traffic paths” by using the 
data history from these sensors. For example, if the light 
level sensors for points A, B, C, and D always change at 
the same time, it can be surmised that these points are all 
in one room with a single light switch. If the temperature 
and humidity sensors for points E through H always 
change together (separately from the other points) it can 
be surmised that they exist in a room with independent air 
conditioning controls (a machine room, for example). 

Further, if by examining the data history from the 
human sensors it is determined that there are large 
numbers of people traveling from point M to point N, and 
from point N to point O, it would be possible to conclude 
that points M, N, and O form a single “corridor” of some 
kind. The same thing might be said of points S and R, and 
R and Q. Moreover, if by combining the data history from 
human sensors and door sensors we often observe the 
sequence of events that point O detects a person, door 3 
opens, point D detects a person, door 4 opens, and then 
point G detects a person successively, it can be surmised 
that points O, 3, D, 4, and G form a “traffic path”. 

Thus, in general, discovering proximity involves 
determining the relationships between sensors by 
examining dynamic and static sensor data correlations. 
The consequent proximity is used to cluster sensors. The 
result of clustering will be then used for forming a 
location model (See Figure 2). 

3.2.  Characteristics of the problem 

The process for finding proximity of sensors can be 
seen as a kind of data mining. Thus, some compensation 
techniques for error data used in normal data mining can 
be applicable. We should also note that the goal of the 
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Figure 1. Sensor points and doors at an office 

floor 
 
 clustering sensor points

using the correlations of 
sensor data history
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Figure 2. From sensor data to proximity clusters, 

from clusters to location model 
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mining is to cluster not the data values but rather the 
aspects of how data changes. For example, imagine the 
following kind of situation: 

• The illumination in a room with a single light 
switch always changes in the same manner, but 
the absolute intensity of illumination (light level) 
differs from location to location in the room 

We have to therefore calculate the correlation between 
data by not the value of sensed data, but rather the time 
when the value of sensed data distinguishably change. 

In addition, there are two types of the changes. 
Namely, 

• Changes of sensor data values that happen almost 
synchronously (Figure 3), applicable to the case 
of detecting a “room” using the data history from 
light, temperature and humidity sensors 

• Changes of sensor data values that happen 
successively (Figure 4), applicable to the case of 
detecting a “traffic path” using the data history 
from human and door sensors 

Thus, the problem we have to solve can be regarded as a 
sort of qualitative similarity detection on a time series 
curve. 

4.  Proximity Mining 

4.1.  Outline of the method 

In this section we outline the Proximity Mining being 
proposed in this paper. It makes use of an analysis of the 
topological characteristics of time series curves [15]. We 
first extract outstanding peaks and bottoms (described in 
Section 4.2) from the time series of sensed data values, 
and calculate degrees of correlation for their order of 
appearance in the time series as degrees of correlation for 
the curve. The clustering of time series curves are then 
performed using the degrees of correlation. This method is 
based on a characteristic that the locations of the peaks 
and bottoms on the time series curve are firm properties in 
relation to the continual change of the time axes and 
observed data values. 

The outline of the whole method is as follows: 
Phase 1. Preprocess data 

• Discard obvious error data (e.g. outside 
of sensor range) 

Phase 2. Calculate the sequences of outstanding 
peaks and bottoms for each sensor data 
history 

Phase 3. Cluster sensors 
• Do simple clustering. The edit-distance 

between the sequences is used as a 
distance measure of the similarity 
between objects which to be clustered 
(sensors, in this case) 

In the next section, we will elaborate on an algorithm 
used in Phase 2. Then, we will show a brief explanation of 
Phase 3 in Section 4.3. 

4.2.  Algorithm for calculating the peak/bottom 
sequences 

At the core of our method is an algorithm for 
calculating outstanding peak/bottom sequences for each 
sensor data history. The data history of each sensor is 
represented by a measured value on the time series. A 
summary of the algorithm is as follows (also see Figure 5). 

Step 0. Define threshold h* 
Step 1. Extract only data that represent the peaks 

and bottoms of the time series 
Step 2. Remove any peak and bottom data whose 

relative height is less than threshold h* 
Step 3. Extract only peaks and bottoms from the 

data remaining after Step 2 
Step 4. Repeat Step 2 if any peaks or bottoms 

whose relative height is less than h* exist. 
If not, processing finishes 

We define that any data remaining after this processing 
has finished are the outstanding peaks and bottoms of that 
data set. The sequence of outstanding peaks and bottoms, 
C(f )[t,t+Tk], is defined by the order of appearances of peak 
P and bottom B for a particular time period [t,t+Tk] of 
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Figure 3. Values change synchronously 
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Figure 4. Values change successively 
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time series data f , which are arrived at through the 
algorithm. 

For example, in Figure 5, there are four pieces of 
sensor data history, f1, f2, f3, and f4. Please note that, in 
the case of this example, we assume that f3 and f4 change 
synchronously,  f3 and f1 change successively (of course 
f4 and f1 change successively too), and f2 changes 
independently. As shown in the Figure 5, the resulting 
peak/bottom sequences become: 

C(f1)[t,t+Tk] = (B,P,B,P) 
C(f2)[t,t+Tk] = (B,P) 
C(f3)[t,t+Tk] = (B,P,B,P,B) 
C(f4)[t,t+Tk] = (B,P,B,P,B) 

4.3.  Clustering sensors 

In this section, we will describe briefly how sensors are 
clustered. The general idea of clustering is to group 
similar objects together. In this paper, an object to be 
clustered is a sensor (not a sensor point). This means that 
we can find even the correlation between sensors at the 
same sensor point. 

A distance measure of the similarity between two 
objects is essential to most clustering procedures. In our 
method, the edit-distance between the sequences is used 
as the distance measure. For instance, illustrating with 
examples in Section 4.2 (and Figure 5), the distances 
between f1, f2, f3 and f4 are: 
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Figure 5. Proximity Mining: the overview of the algorithm for calculating the peak/bottom sequences 
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D(f3,f4)[t,t+Tk] = 0 
D(f1,f3)[t,t+Tk] = D(f1,f4)[t,t+Tk] = 1 
D(f1,f2)[t,t+Tk] = 2 
D(f2,f3)[t,t+Tk] = D(f2,f4)[t,t+Tk] = 3 

In the context of this paper, the shape, size, and 
number of the cluster is generally unknown. So, we solely 
use the simple clustering algorithm [10] at this time. The 
sensor clustering is actually done while altering the time 
period [t,t+Tk]. At the present time, we use five patterns 
for the length of the time period (Tk), 1-hour, 6-hours, 1-
day, 4-days, and 1-week. Since the sensor data values are 
profoundly affected by the activities of the people using 
the environment, it was thought best to choose lengths of 
time that might correspond to the lengths of normal 
human activities. 

5.  Initial experiments of Proximity Mining 

5.1.  Sensor hardware and setting 

We have implemented an initial experimental setup 
for the Proximity Mining. This section explains sensor 
hardware and setting used in this experimentation. 

At the time of this writing, we are collecting data 
from a total of 52 sensors in 12 points on a single office 
floor. We place sensors in three rooms, three doorways, 
and one corridor. There are 9 kinds of sensors used: 

1) Light level sensors — Using CdS or photodiode. 
Yield a nominal light level (the intensity of 
illumination). Original sensor circuit is designed 
to provide a signal between 0 and +12 volts DC. 

2) Temperature sensors — Using LM35DZ by 
National Semiconductor Corp. Provide a signal 
between 0 and +5 volts DC, linear +10.0 mV/°C 
scale factor, and ±0.5 °C accuracy. 

3) Humidity sensors — Using CHS-GSS by TDK. 
Original sensor circuit is designed to provide a 
signal between 0 and +12 volts DC, linear +10.0 
mV/% scale factor, and ±5 % accuracy. 

4) Odor sensors — Using NAP-11AS, In2O3 
semiconductor type gas sensor, by Nemoto & Co., 
Ltd. Yield a nominal odor level of various smells 
generated in a normal living environment, such 
as cooking odors, putrid smells, organic solvent 
smells, cigarette smoke, cosmetics, coffee, etc. 
Original sensor circuit is designed to provide a 
signal between 0 and +12 volts DC. 

5) Voltage sensors — Voltmeter for some electric 
devices in the office. Original sensor circuit is 
designed to provide a signal between 0 and +12 
volts DC. 

6) Current sensors — Ammeter for some electric 
devices in the office. Original sensor circuit is 
designed to provide a signal between 0 and + 12 
volts DC. 

7) Pyroelectric motion sensors for human detecting 
— Using NaPiOn by Matsushita Electric Works, 
Ltd. Detect human bodies (detect changes in 
infrared light that occur due to the movement of a 
living body). Provide a signal between 0 and +5 
volts DC. Detecting distance is about from 0 to 5 
meter. 

8) Optical Position Sensitive Detectors for human 
detecting — Using PSD by Sharp Corp. Measure 
a distance to an object (suspecting the human 
body). Original sensor circuit is designed to 
provide a signal between 0 and +5 volts DC. 
Detecting distance is about from 0.2 to 1.5 meter. 

9) Reed switches — Detect open and close the door. 
Original sensor circuit is designed to provide a 
signal 0 volts DC when the door closes and +5 
volts DC when open. 

Analog signals from sensors are passed to micro-
controller (PIC) boxes. These boxes do analog-to-digital 
conversion, encapsulate them into UDP packets, and then 
send the packets to a data-gathering host via Ethernet. To 
send data, either wired (10/100BASE-T) or wireless 
(IEEE 802.11a/b) network connection is used, according 
to where sensors are located. The analog-to-digital 
conversions have 10 to 16 bits accuracy (depend on which 
micro-controller chip is used). In the most cases, a single 
micro-controller box serves 4 to 8 sensors. 

For the sensors 1) to 6), they are sampled and data-
sent at a rate of once per minute. On the other hand, for 
the sensors 7) to 9), sensors are sampled at a rate of once 

 
Figure 6. Sensors in our office 
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per 10 to 100 milliseconds, but the micro-controllers just 
keep watching over whether the human body is detected 
(the door opens). And only once in a minute, the results of 
the occurrence of the human detection (door opening) 
during the minute are sent to the host. Figure 6 shows 
pictures of sensors placed in our office. 

5.2.  Experimental results 

First of all, we will show examples of time series data 
from sensors. One of easiest and fastest way to grasp 
general characteristics of these data and also to predict 
how a system could group the raw data into clusters, is by 
plotting the output of all sensors directly on a time scale in 
parallel. Figure 7(a) shows time series of all sensor data 
during six hours, and Figure 7(b) shows ones for a week. 
Since there are too many data to plot, we cannot show the 
functions of each time series in these figures. 

However, some periodic changes can be found in 
these plots, and it could be imagined that those changes 
are affected by the activities of the people in our office. 
For example, Figure 7(a) shows that, one day, in the 
morning, a person came to the office and turned the light 
of a room on at just after 7:00 am. He or she switched 
some office equipment on at about 7:10 am. At around 
9:45 am, the light of another room was switched on. In 
addition, Figure 7(b) shows that we did not work at 
midnight, as well as on the weekend. 

To pay attention to some time series data, Figure 8 
shows that time series of six sensors values indicating the 
light level in three different rooms during four days. 
Actually, light1 and light2 are in the room-1, light3 and 
light4 are in the room-2, and light5 and light6 are in the 
room-3. Similarly, Figure 9 shows that time series of three 
sensors values during six hours. They are one odor sensor, 
one humidity sensor, and one human detecting sensor. 

 
 

Figure. 8 Time series of the light sensors 
 
 

 
 

Figure. 9 Time series of the odor, humidity, and 
human sensor 

 
 

 
 

(a) 6 hours 
 
 

 
 

(b) 1 week 
 

Figure 7. Time series of all sensor data 
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With this experimental environment and the sensor 
setup, our algorithm typically results in generating the 
following eight clusters: 

1) Cluster-A 
• Contains five light level sensors 

2) Cluster-B 
• Contains three light level sensors 

3) Cluster-C 
• Contains three light level sensors 

4) Cluster-D 
• Contains one current sensor and two human 

sensors 
5) Cluster-E 

• Contains one odor sensor, one humidity 
sensor, and one human sensor 

6) Cluster-F 
• Contains one door sensor and one human 

sensor 
7) Cluster-G 

• Contains one door sensor and one human 
sensor 

8) Cluster-H 
• Contains one door sensor and one human 

sensor 

Based on the above clustering result and a knowledge that 
some light sensors and human sensors are placed at the 
same sensor point, we can now assume that Cluster-A 
includes Cluster-D, Cluster-E, and Cluster-F, Cluster-B is 
includes Cluster-G, and Cluster-C includes Cluster-H, 
respectively. Figure 10(a) illustrates the final result of the 
clustering. 

Now it is time to examine the result. For Cluster-A, 
Cluster-B, and Cluster-C, these clusters clearly represent 
the discovery of three rooms. Cluster-D represents the 
existence of a certain device in our office and the people 
using it. Cluster-E shows the area where people appear, 
and an odor and moisture breaks out sometimes. Actually, 
Cluster-E reflects a coffee maker table in the room. 
Cluster-F, Cluster-G, and Cluster-H represent doorways. 
We illustrate this interpretation of the clustering result in 
Figure 10(b). 

6.  Discussion 

6.1.  Experience with sensor data mining 

Current Proximity Mining algorithm only generates 
subsymbolic information of locations. This is principally 
because, at the moment, we do not use any ID-based 
information on things and persons (like using RFID). 
Thus, as shown in the previous section, it is difficult to 
determine things like which cluster corresponds to which 
room, or how the doorways are connected to those rooms. 

This makes it hard to be grounded [7] clusters in actual 
properties. However, we think such subsymbolic 
information is a clue to elucidate the logical structure of 
surroundings with less administrative effort. 

Another possible problem with our method is that it 
takes a certain amount of time to build up the data history 
needed to create the location information. However, we 
think that this boot-up procedure could be shortened by 
users’ assistance. For example, at the initial time, a user 
can turn the light a room on and off, quickly over again 
intentionally, to make the system recognize this room. A 
user also can touch human sensors one by one along the 
hallway, to show the “traffic path”. 
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(b) Interpretation of the resulting clusters 

 
Figure 10. The result of the sensor clustering 
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Now let us discuss the sensors separately. First of all, 
the light level sensors are particularly informative. Almost 
all rooms (with a single light switch) can be found by 
mining only the light sensor data. On the other hand, 
temperature and humidity sensors are not so usable. One 
of the reasons for this incompetency is that the 
experimentation is done in “well air-conditioned” office. 
At this moment, we could not estimate if these sensors are 
usable in less air-conditioned environments or not. 
However, as shown in the result, the humidity sensor 
played an unforeseen role, finding steam. It is easy to 
imagine that humidity sensors (and odor sensors) will be 
used for finding a kitchen in the home environments, and 
furthermore, used for mining the context of the kitchen. 
The human detectors (both pyroelectric motion sensors 
and optical Position Sensitive Detectors) and door sensors 
by reed switches work very well. 

The experimental environment has been set at part of 
our office. Eight persons usually work, five to ten 
neighbor colleagues often drop in, and casual guests visit 
sometimes at this area. It is not yet considered that the 
effect of the number of people in the environment, 
especially upon finding like corridors and traffic paths. 

6.2.  Related work 

Some kinds of data mining make use of data from 
spatial phenomena, and there is research being done into 
this “spatial data mining”. [13] Spatial data mining in 
general is concerned with using the spatial characteristics 
of data to extract patterns and clusters. We wish to point 
out that in our own research we are concerned with 
extracting spatial structure itself from time series data, and 
in that respect it is different from the work being done by 
others. 

The most closely related to our work is that research 
in sensor-based context-awareness. For example, in 
[5][17], sensor data are mined to obtain the context of the 
people (or things like mobile phone and coffee cup). 
However, in contrast to their approach, we are now 
focusing to obtain location information, in other words, to 
reveal the semantic structure of the surroundings where 
people are. We think these two approaches will 
complement each other. 

7.  Conclusion and Future Work 

In this paper we have introduced Proximity Mining, 
the new approach to build location information by mining 
sensor data. It analyzes sensor data history to examine the 
dynamic and static sensor data correlations, and then 
clusters sensors by using the correlations to find the 
structure of surroundings. Also we have reported the 
results of our initial experiments of this approach. 

In a sensor-filled real-world ubiquitous computing 
environment, it is very important to be able to determine 
the placement of sensors with less administrative effort. 
We plan to build an actual location system by solely using 
the analysis of device proximity data, and implement 
context-aware applications based on this location system. 

Our main contention in this research is that location-
aware applications only actually need the answers to 
queries about things like “distance” and “inclusion”, and 
that geometric coordinates are merely ways of calculating 
these values. Thus, if the answers to these queries can be 
arrived at in some other way, there is no need to insist on 
using a geometric location model. It remains to be seen 
what kinds of applications can be created using the data 
obtained through our method, and which kinds are 
impossible. 

We also started introducing ID-based sensor systems 
(RFID) to our environment. We would like to stress here 
that the purpose of introducing RFID is to be grounded 
clusters in actual properties. Thus, we do not presuppose 
the situation that every objects in the world will become 
RFID-equipped. One of our aims is to achieve more 
intelligent surroundings with less ID-equipped human and 
artifacts. 

Acknowledgements 

The authors would like to thank many people at our 
laboratory group for their generous help. This paper 
would not have been possible without the valuable 
discussions with Kensuke Fukuda, Susumu Shimizu, 
Kenichi Kourai, and Shigemi Aoyagi. Keiji Hirata and 
Yasunori Harada have made some excellent suggestions 
regarding our project. Minoru Kubota has encouraged us 
in our research. Suggestions of the reviewers helped 
improve this paper, and we are particularly grateful to 
them for their valuable comments. 

References 

[1]  Bauer, M., Becker, C., and Rothermel, K., “Location 
models from the perspective of context-aware applications 
and mobile ad hoc networks”, In [2], pp. 35-40. 

[2]  Beigl, M., Gray, P., and Salber, D. (eds.), Location 
Modeling for Ubiquitous Computing, Workshop 
Proceedings, UbiComp 2001, 2001. 

[3]  Brumitt, B. and Shafer, S., “Topological world modeling 
using semantic spaces”, In [2], pp. 55-62. 

[4]  Bulusu, N., Estrin, D., and Heidemann, J., “Tradeoffs in 
location support systems: the case for quality-expressive 
location models for applications”, In [2], pp. 7-12. 

[5]  Gellersen, H.-W., Schmidt, A., and Beigl, M., “Adding 
some smartness to devices and everyday things”, In 
Proceedings of the 3rd IEEE Workshop on Mobile 
Computing Systems and Applications (WMCSA 2000), 
pp. 3-10, 2000. 

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)  
0-7695-1995-4/03 $17.00 © 2003 IEEE 



[6]  Guttman, E., “Autoconfiguration for IP networking: 
enabling local communication”, IEEE Internet Computing, 
Vol. 5, No. 3, 2001, pp. 81-86. 

[7]  Harnad, S., “The Symbol Grounding Problem”, Physica D, 
Vol. 42, 1990, pp. 335-346. 

[8]  Hightower, J. and Borriello, G., A Survey and Taxonomy of 
Location Systems for Ubiquitous Computing, Technical 
Report UW-CSE 01-08-03, University of Washington, 
2001. 

[9]  Hightower, J., Brumitt, B., and Borriello, G., “The location 
stack: a layered model for location in ubiquitous 
computing”, In Proceedings of the 4th IEEE Workshop on 
Mobile Computing Systems and Applications 
(WMCSA 2002), pp. 22-28, 2002. 

[10] Jain, A. K., Murty, M. N., and Flynn, P. J., “Data 
clustering: a review”, ACM Computing Surveys, Vol. 31, 
No. 3, 1999, pp. 264-323. 

[11] Jiang, C. and Steenkiste, P., “A hybrid location model with 
a computable location identifier for ubiquitous computing”, 
In UbiComp 2002 Proceedings, LNCS 2498, pp. 246-263, 
2002. 

[12] Leonhardt, U.: Supporting Location-Awareness in Open 
Distributed Systems, PhD thesis, Imperial College, 
University of London, 1998. 

[13] Ng, R. T. and Han, J., “CLARANS: a method for clustering 
objects for spatial data mining”, IEEE Transactions on 
Knowledge and Data Engineering, Vol. 14, No. 5, 2001, 
pp. 1003-1016. 

[14] O'Connell, T., Jensen, P., Dey, A., and Abowd, G., 
“Location in the aware home”, In [2], pp. 41-44. 

[15] Okabe, A. and Masuyama, A., “An exploratory method for 
qualitative trend curve analysis – a robust method against 
low quality data”, International Journal of Geographical 
Information Science, Vol. 15, No. 1, 2001, pp. 65-76. 

[16] Schiele, B. and Antifakos, S., “Beyond position 
awareness”, In [2], pp. 107-112. 

[17] Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., 
Van Laerhoven, K., and Van de Velde, W., “Advanced 
Interaction in Context,” In Proceedings of the First 
International Symposium on Handheld and Ubiquitous 
Computing (HUC 99), LNCS 1707, pp. 89-101, 1999. 

[18] Thomson, S. and Narten, T., IPv6 Stateless Address 
Autoconfiguration, RFC 2462, 1998. 

[19] Thrun, S., Robotic Mapping: A Survey, Technical Report 
CMU-CS-02-111, Carnegie Mellon University, 2002. 

[20] Weiser, M., “The computer for the 21st Century”, Scientific 
American, Vol. 265, No. 3, 1991, pp. 94-104. 

 

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems & Applications (WMSCA 2003)  
0-7695-1995-4/03 $17.00 © 2003 IEEE 


